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In This Section You’ll Learn to...

 

☛

 

Define the classic orbital elements (COEs) used to describe the size, 
shape, and orientation of an orbit and the location of a spacecraft in 
that orbit
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Determine the COEs given the position, , and velocity, , of a 
spacecraft at one point in its orbit
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Explain and use orbital ground tracks
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Space Mission Architecture. This chapter
deals with the Trajectories and Orbits segment
of the Space Mission Architecture introduced
in Figure 1-20.
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n the last chapter we looked at the restricted two-body problem and
developed an equation of motion to describe in strictly mathematical
terms, how spacecraft move through space. But many times it’s not

enough to generate a list of numbers that give a spacecraft’s position and
velocity in inertial space. Often, we want to visualize its orbit with respect
to points on Earth. For example, we may want to know when a remote-
sensing spacecraft will be over a flood-damaged area (Figure 4.1.4-1).

In this chapter, we’ll explore two important tools that help us “see”
spacecraft motion—the classic orbital elements (COEs) and ground
tracks. Once you get the hang of it, you’ll be able to use these COEs to
visualize how the orbit looks in space. Ground tracks will allow you to
determine when certain parts of the Earth pass into a spacecraft’s field of
view, and when an observer on Earth can see the spacecraft. 

Figure 4.1.4-1. Mississippi River Flooding. Here we show an Earth Observation System
view of the river flooding at St. Louis, Missouri, in 1993. (Courtesy of NASA/Goddard Space
Flight Center)
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4.1.1.1 Orbital Elements

In This Section You’ll Learn to...

If you’re flying an airplane and the ground controllers call you on the
radio to ask where you are and where you’re going, you must tell them
six things: your airplane’s

• Latitude

• Longitude

• Altitude

• Horizontal velocity

• Heading (i.e. north, south, etc.)

• Vertical velocity (ascending or descending)

Knowing these things, controllers can then predict your future position.
Space operators do something similar, except they don’t ask where the

spacecraft is; instead, they use radar at tracking sites to measure it’s
current position, , and velocity, . As we’ll see in Chapter 8, this
information helps them predict the spacecraft’s future position and
velocity. Notice that position, , and velocity, , are vectors with three
components each. Unfortunately, unlike latitude and longitude used for
aircraft,  and  aren’t very useful in visualizing a spacecraft’s orbit.

For example, suppose you’re given this current position and velocity
for a spacecraft

What could you tell about the orbit’s size and shape or the spacecraft’s
position?

With the tools you’ve learned, about the only thing you could do is
plot  and  in a 3-dimensional coordinate system and try to visualize
the orbit that way. Fortunately, there’s an easier way. Hundreds of years
ago, Johannes Kepler developed a method for describing orbits that
allows us to visualize their size, shape, and orientation, as well as the
spacecraft’s position within them. Because we still need six quantities to
describe an orbit and a spacecraft’s place in it, Kepler defined six orbital
elements. We call these the classic orbital elements (COEs), and we’ll use

☛ Define the classic orbital elements (COEs)

☛ Use the COEs to describe the size, shape, and orientation of an orbit 
and the location of a spacecraft in that orbit

☛ Explain when particular COEs are undefined and which alternate 
elements we must use in their place

R V
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✔

them to tell us the four things we want to know, as summarized in the
COEs checklist on the left. In the rest of this section, we’ll go through each
of the four things on the checklist and learn which COE describe the
given properly. As a preview, we’ll learn

• Orbital size, uses the semimajor axis, a
• Orbital shape, is defined by eccentricity, e
• Orientation of the orbital plane in space, uses

- inclination, i
- right ascension of the ascending node, Ω

• Orientation of the orbit within the plane is defined by argument of 
perigee, ω and finally

• Spacecraft’s location in the orbit is represented by true anomaly, ν 

Let’s go through these elements to see what each one contributes to our
understanding of orbits and check them off one at a time on our COE
checklist.

Defining the Classic Orbital Elements (COEs)
Let’s start with orbital size. In Chapter 4 we related the size of an orbit

to its specific mechanical energy using the relationship

(4.1.4-1)

where
ε = specific mechanical energy (km2/s2)
µ = gravitational parameter of the central body (km3/s2)
a = semimajor axis (km)

The semimajor axis, a, describes half the distance across the orbit’s major
(long) axis, as shown in Figure 4.1.4-2, and we use it as our first COE.

ε µ
2a
------–=

Figure 4.1.4-2. Semimajor Axis. The semimajor axis, a, is one half the distance across the
long axis of an ellipse. The distance between the foci (F and F') of the ellipse is 2c.
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Figure 4.1.4-3. Eccentricity. Eccentricity
defines an orbit’s shape.

Figure 4.1.4-4. The Geocentric-equatorial
Coordinate System. We use the geocentric-
equatorial coordinate system to reference all
orbital elements. The fundamental plane is
Earth’s equatorial plane, the principal direction
( ) points in the vernal equinox direction, ,
the  unit vector points to the North Pole, and

 completes the right-hand rule.

Î
K̂

Ĵ

  

With the orbit’s size accounted for, the next thing we want to know is
its shape. In Chapter 4, we described the “out of roundness” of a conic
section in terms of its eccentricity, e. 

 

Eccentricity

 

 specifies the shape of an
orbit by looking at the ratio of the distance between the two foci and the
length of the major axis.

(4.1.4-2)

Table 4.1.4-1 summarizes the relationship between an orbit’s shape and its
eccentricity and Figure 4.1.4-3 illustrates this relationship.

Now we have two pieces of our orbital puzzle: its size, a, and its shape,
e. Next we tackle its orientation in space. Previously we learned that
because specific angular momentum is constant, an orbital plane is
stationary in inertial space. To describe its orientation, we refer to an
inertial coordinate system—the geocentric-equatorial coordinate system,
shown in Figure 4.1.4-4. (In the following discussion, we describe angles
between key vectors, so make sure you know how to perform dot
products and how to change from degrees to radians.)

The first angle we use to describe the orientation of an orbit with
respect to our coordinate system is inclination, i. 

 

Inclination

 

 describes the
tilt of the orbital plane with respect to the fundamental plane (the
equatorial plane in this case). We could describe this tilt as the angle
between the two planes, but this is harder to do mathematically. Instead,
we define inclination as the angle between two vectors: one perpen-
dicular to the orbital plane,  (the specific angular momentum vector),
and one perpendicular to the fundamental plane, , as shown in Figure
4.1.4-5. Inclination has a range of values from 0° to 180°.

We use inclination to define several different kinds of orbits. For
example, an Earth orbit with an inclination of 0° or 180° is an 

 

equatorial
orbit

 

, because it always stays over the equator. If the orbit has i = 90°, we
call it a 

 

polar orbit

 

 because it travels over the North and South Poles. We
also use the value of inclination to distinguish between two major classes
of orbits. If , the spacecraft is moving with Earth’s rotation (in
an easterly direction), and the spacecraft is in a 

 

direct orbit

 

 

 

or

 

 

 

prograde
orbit. If , the spacecraft is moving opposite from Earth’s
rotation (in a westerly direction), so it’s in an indirect orbit or retrograde
orbit. Table 4.1.4-2 summarizes these orbits.

Table 4.1.4-1. Relationship Between Conic Section and Eccentricity.

Conic Section Eccentricity

Circle e = 0

Ellipse 0 < e < 1

Parabola e = 1

Hyperbola e > 1

e 2c
2a
------=

h
K̂

0° i 90°<≤

90° i< 180°≤
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Figure 4.1.4-5. Inclination. Inclination, i, de-
scribes the tilt of the orbital plane with respect
to the equator. The angle between the two
planes is the same as the angle between 
(which is perpendicular to the equator) and 
(which is perpendicular to the orbital plane).

K̂
h

Thus, inclination is the third COE. It specifies the tilt of the orbital
plane with respect to the fundamental plane and helps us understand an
orbit’s orientation with respect to the equator.

The fourth COE is another angle, right ascension of the ascending node, Ω,
used to describe orbital orientation with respect to the principal direction,

. Before you give up on this complex-sounding term, let’s look at each of
its pieces. First of all, what is “right ascension?” It’s similar to longitude
except its reference point is the vernal equinox and it doesn’t rotate with
Earth. So, right ascension of the ascending node is an angle we measure
along the equator, starting at the  direction.

Now let’s look at the other part of this new angle’s name, “ascending
node” (or a node of any kind)? As we just described, the orbital plane
normally tilts (is inclined) with respect to the fundamental plane (unless
i = 0° or 180°). From plane geometry, you may remember that the intersec-
tion of two planes forms a line. In our case, the intersection of the orbital
plane and the fundamental plane is the line of nodes. The two points at
which the orbit crosses the equatorial plane are the nodes. The node where
the spacecraft goes from below the equator (Southern Hemisphere) to
above the equator (Northern Hemisphere) is the ascending node. Similarly,
when the spacecraft crosses the equator heading south, it passes through
the descending node. See Table 4.1.4-2.

Table 4.1.4-2.Types of Orbits and Their Inclination.

Inclination Orbital Type Diagram

0° or 180° Equatorial

90° Polar

0° ≤ i < 90° Direct or Prograde 
(moves in the direction of 
Earth’s rotation)

90° < i ≤ 180° Indirect or Retrograde 
(moves against the 
direction of Earth’s 
rotation)

Î

Î

i = 90°

ascending
node

ascending
node
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Now let’s put “right ascension” and “ascending node” together. The
right ascension of the ascending node describes the orbital plane’s
orientation with respect to the principal direction. That is, how is the
orbital plane rotated in space? We use the vernal equinox direction or 
(an inertial reference) as the starting point and measure eastward along
the equator to the ascending node. Thus, the right ascension of the
ascending node, Ω, is the angle from the principal direction, , to the
ascending node. It acts like a celestial map reference to give us the swivel
of the orbit, helping us to better understand its orientation in space.
Figure 4.1.4-6 illustrates the right ascension of the ascending node. Its
range of values is . That’s now 4 out of 6 on our COE
checklist.

Let’s recap where we are. We now know the orbit’s size, a, its shape, e,
its tilt, i, and its swivel, Ω . But we don’t know how the orbit is oriented
within the plane. For example, for an elliptical orbit, we may want to
know whether perigee (point closest to Earth) is in the Northern or
Southern Hemisphere. This is important if we want to take high-
resolution pictures of a particular point. So, for this fifth orbital element,
we measure the angle along the orbital path between the ascending node
and perigee and call it argument of perigee, ω. To remove any ambiguities,
we always measure this angle in the direction of spacecraft motion. 

Where does this unusual sounding term “argument of perigee” come
from? To begin with, perigee is an easily identifiable point on the orbit to
reference. But why “argument”? Because we’re “making clear” (from
Latin) where perigee is. So our fifth COE, argument of perigee, ω, is the
angle measured in the direction of the spacecraft’s motion from the
ascending node to perigee. It gives us the orientation of the orbit within
the orbital plane, as shown in Figure 4.1.4-7. The range on argument of
perigee is . That’s 5 down and 1 to go on our COE checklist.

Î

Î

0° Ω 360°<≤

Figure 4.1.4-6. Right Ascension of the Ascending Node, Ω. This angle describes the
swivel of the orbital plane with respect to the principal direction. It is the angle along the
equator between the principal direction, , and the point where the orbital plane crosses the
equator from south to north (ascending node), measured eastward.

Î

0° ω 360°<≤
4.1.4-158



Figure 4.1.4-8. True Anomaly. True
anomaly, ν, specifies the location of a
spacecraft within the orbit. It is the angle
between perigee and the spacecraft’s position
vector measured in the direction of the
spacecraft’s motion. Of all the COEs, only true
anomaly changes with time (as long as our

✔

✔

✔

✔

After specifying the size and shape of the orbit, along with its
orientation (tilt and swivel), we still need to find a spacecraft’s location
within the orbit. As we’ve already seen in Chapter 4, we can find this
using the true anomaly. True anomaly, ν, is the angle along the orbital path
from perigee to the spacecraft’s position vector, . Similar to the
argument of perigee, we measure true anomaly in the direction of the
spacecraft’s motion. Figure 4.1.4-8 shows true anomaly. Its range of
values is  < 360°.

True anomaly, ν, tells us the location of the spacecraft in its orbit. Of all
the COEs, only true anomaly changes with time (while our two-body
assumptions hold) as the spacecraft moves in its orbit.

Now that you’ve seen all six of the COEs, we can show four of them
together in Figure 4.1.4-9 (we can show size and shape only indirectly in
the way we draw the orbit). Table 4.1.4-3 summarizes all six. That
completes our COE checklist. We’ve shown all you need to know about
describing an orbit and locating a spacecraft within it. 

Figure 4.1.4-7. Argument of Perigee, ω. This angle describes the orientation of an orbit
within its orbital plane. It is the angle between the ascending node and perigee, measured in
the direction of the spacecraft’s motion. 

R

0° ν≤
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Table 4.1.4-3.Summary of Class

Element Name

a Semimajor axis

e Eccentricity

i Inclination

Ω Right ascension of 
the ascending 
node

ω Argument of 
perigee

ν True anomaly
Figure 4.1.4-9. Classic Orbital Elements (COEs). Here we show four of the six COEs. We
use the COEs to visualize an orbit and locate a spacecraft in it. The other two COEs,
semimajor axis, a, and eccentricity, e, specify the size and shape of an orbit.

ic Orbital Elements.

Description Range of Values Undefined

Size Depends on the 
conic section

Never

Shape e = 0: circle
0 < e < 1: ellipse

Never

Tilt, angle from  unit vector to 
specific angular momentum 
vector 

0 ≤ i ≤ 180° Never

Swivel, angle from vernal equinox 
to ascending node

0 ≤ Ω < 360° When i = 0 or 180°
(equatorial orbit)

Angle from ascending node to 
perigee

0 ≤ ω < 360° When i = 0 or 180° (equatorial 
orbit) or e = 0 (circular orbit)

Angle from perigee to the 
spacecraft’s position

0 ≤ ν < 360° When e = 0 (circular orbit)

K̂

h

4.1.4-160



Figure 4.1.4-10. Orbital Size and Shape.
Here we show the approximate size and shape
of an orbit with a semimajor axis of 50,000 km
and an eccentricity of 0.4.

Figure 4.1.4-11. Inclination. This orbit has
an inclination of 45°.
By now you may wonder what all these COEs are good for! Let’s look
at an example to see how they can help us visualize an orbit. Suppose a
communication satellite has the following COEs

• Semimajor axis, a = 50,000 km

• Eccentricity, e = 0.4

• Inclination, i = 45°

• Right ascension of the ascending node, Ω = 50°

• Argument of perigee, ω = 110°

• True anomaly, ν = 170°

To begin with, as in Figure 4.1.4-10, we can sketch the size and shape of
the orbit given the semimajor axis and the eccentricity. The eccentricity of
0.4 indicates an elliptical orbit (it’s between 0 and 1). The semimajor axis
of 50,000 km tells us how large to draw the orbit.

Now that we see the orbit in two dimensions, we can use the other
COEs to visualize how it’s oriented in three dimensions. Because the
inclination angle is 45°, we know the orbital plane tilts 45° from the
equator. We can also describe inclination as the angle between the specific
angular momentum vector, , and  in the geocentric-equatorial
coordinate system. So we can sketch the crossing of the two planes in
three dimensions as you see in Figure 4.1.4-11.

Next, to find the swivel of the orbital plane with respect to the principal
direction, we use the right ascension of the ascending node, Ω. After
locating the principal direction in the equatorial plane, , we swivel the
orbital plane by positioning the ascending node 50° east of the  vector.
What we know so far gives us the picture of the orbit in Figure 4.1.4-12.

h K

Î
Î

Figure 4.1.4-12. Our Orbit So Far. Here we show an orbit with an inclination, i, of 45° and
a right ascension of the ascending node, Ω, of 50°.
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So, we’ve completely specified the orbit’s size and shape, as well as the
orientation of the orbital plane in space. But we still don’t know how the
orbit is oriented within the plane. Argument of perigee, ω, comes next. To
locate perigee within the orbital plane, we rotate perigee 110° from the
ascending node, in the direction of spacecraft motion. Figure 4.1.4-13
shows how to orient the orbit in the orbital plane.

Finally, we locate our communication satellite within the orbit. Using
the value of true anomaly, ν, we measure 170° in the direction of space-
craft motion from perigee to the spacecraft’s position. And there it is in
Figure 4.1.4-14!

Figure 4.1.4-13. Argument of Perigee for the Example. We rotate perigee 110o from the
ascending node to determine the argument of perigee, ω, is 110°.

Figure 4.1.4-14. Finding the Satellite. Here we show the position of a satellite with the
following COEs: a = 50,000 km; i = 45°; Ω = 50°; ω = 110°; ν = 170°.
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ation Other

e ≅ 0

e ≅ 0

e ≅ 0

, 39°, 
r 57°

e ≅ 0

ω = 270°
e = 0.7
As we already know, various missions require different orbits, as
described by their COEs. Table 4.1.4-4 shows various types of missions
and their typical orbits. A geostationary orbit is a circular orbit with a
period of about 24 hours and inclination of 0°. Geostationary orbits are
particularly useful for communication satellites because a spacecraft in
this orbit appears motionless to an Earth-based observer, such as a fixed
ground station for a cable TV company. Geosynchronous orbits are inclined
orbits with a period of about 24 hours. A semi-synchronous orbit has a
period of 12 hours. Sun-synchronous orbits are retrograde, low-Earth orbits
(LEO) typically inclined 95° to 105° and often used for remote-sensing
missions because they pass over nearly every point on Earth’s surface. A
Molniya orbit is a semi-synchronous, eccentric orbit used for some specific
communication missions. 

Alternate Orbital Elements
Now that we’ve shown how to find all the classic orbital elements

(COEs), we’re ready to share some bad news—they’re not always
defined! For example, a circular orbit has no perigee. In this case, we have
no argument of perigee, ω, or true anomaly, ν, because both use perigee as
a reference. To correct this deficiency, we bring in an alternate orbital
element to replace these two missing angles. In general, whenever we
face a peculiar orbit with one or more of the COEs undefined, we work
backward from the spacecraft’s position vector (the one thing that’s
always defined) to the next quantity that is defined. For our circular-orbit
example, instead of using true anomaly to define position, we use the first
alternate element—the argument of latitude, u. We measure argument of
latitude, u, along the orbital path from the ascending node to the
spacecraft’s position in the direction of the spacecraft’s motion.

Table 4.1.4-4.Orbital Elements for Various Missions.

Mission Orbital Type
Semimajor Axis 
(Altitude) Period Inclin

• Communication
• Early warning
• Nuclear detection

Geostationary 42,158 km 
(35,780 km)

~24 hr ~0°

• Remote sensing Sun-synchronous ~6500 – 7300 km 
(~150 – 900 km)

~90 min ~95°

• Navigation
– GPS

Semi-synchronous 26,610 km 
(20,232 km)

12 hr 55°

• Space Shuttle Low-Earth orbit ~6700 km (~300 km) ~90 min 28.5°
51°, o

• Communication/
intelligence

Molniya 26,571 km (Rp = 7971 km; 
Ra = 45,170 km)

12 hr 63.4°
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Figure 4.1.4-15. Alternate Orbital
Elements. We use the alternate orbital
elements when one or more of the classic
orbital elements are undefined. u is the
argument of latitude. Π is the longitude of

Table 4.1.4-5.Alternate Orbital 

Element Name

u Argument of 
latitude

Π Longitude of 
perigee

l True longitude

Section Review

Key Concepts

➤ To specify a spacecraft’s orbit in sp
• Orbit’s Size
• Orbit’s Shape
• Orbit’s Orientation
• Spacecraft’s Location

➤ The six classic orbital elements (CO
• Semimajor axis, a—one-half the

and relates to an orbit’s energy.
• Eccentricity, e—specifies the sha
• Inclination, i—specifies the orien

such as the equator
• Right ascension of the ascending

respect to the principal direction
• Argument of perigee, ω—specifi
• True anomaly, ν—specifies a spa

➤ Whenever one or more COEs are u
Another special situation that requires an alternate element is an
equatorial orbit (i = 0° or 180°). In this case, the line of intersection
between the equator and the orbital plane is missing (the line of nodes),
so the ascending node doesn’t exist. This time the right ascension of the
ascending node, Ω, and the argument of perigee, ω, are undefined. We
replace them with another alternate element, the longitude of perigee, Π—
the angle measured from the principal direction, , to perigee in the
direction of the spacecraft’s motion.

Finally, a circular equatorial orbit has neither perigee nor ascending node,
so the right ascension of the ascending node, Ω, the argument of perigee,
ω, and true anomaly, ν, are all undefined! Instead, we use a final alternate
element to replace all of them—the true longitude, l. We measure this
angle from the principal direction, , to the spacecraft’s position vector,

, in the direction of the spacecraft’s motion. Figure 4.1.4-15 and Table
4.1.4-5 summarize these alternate orbital elements.  

Î

Î
R

Elements.

Description Range of Values When to Use

Angle from ascending node 
to the spacecraft’s position

 < 360° Use when there is no perigee (e = 0)

Angle from the principal 
direction to perigee

 < 360° Use when equatorial (i = 0 or 180°) 
because there is no ascending node

Angle from the principal 
direction to the spacecraft’s 
position

 < 360° Use when there is no perigee and 
ascending node (e = 0 and i = 0 or 
180°)

0° u≤

0° Π≤

0° l≤

ace, you need to know four things about it

Es) specify these four pieces of information
 distance across the long axis of an ellipse. It specifies the orbit’s size 

pe of an orbit by telling what type of conic section it is
tation or tilt of an orbital plane with respect to a fundamental plane, 

 node, Ω—specifies the orientation or swivel of an orbital plane with 
, 
es the orientation of an orbit within the plane
cecraft’s location within its orbital plane
ndefined, you must use the alternate orbital elements

Î
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Figure 4.1.4-16. Car and Airplane Ground
Tracks. Ground tracks for a trip by car and air
from San Francisco to Omaha.

Figure 4.1.4-17. Earth and Spacecraft
Motion. The Earth spins on its axis at nearly
1600 km/hr (1000 m.p.h.) at the equator, while a
spacecraft orbits above it.

Figure 4.1.4-18. Great Circles. A great circle
is any circle around a sphere which bisects it
(cuts it exactly in half). Lines of longitude are
great circles whereas lines of latitude (except
for the equator) are not.
4.1.4.2 Spacecraft Ground Tracks

In This Section You’ll Learn to...

The six classic orbital elements (COEs) allow us to visualize an orbit
from space. Now let’s beam back to Earth to see orbits from our
perspective on the ground.

Many spacecraft users need to know what part of Earth their spacecraft
is passing over at any given time. For instance, remote-sensing satellites
must be over precise locations to get the coverage they need. As we’ll see,
we can learn a lot about a spacecraft’s orbit and mission by examining the
track it makes along Earth.

To understand ground tracks, imagine you’re driving from San
Francisco to Omaha. To get there, you go east out of San Francisco on
Interstate 80 for a couple thousand miles. If you have a road map of the
western United States, you can trace your route on the map by drawing a
meandering line along I-80, as shown in Figure 4.1.4-16. This is your
ground track from San Francisco to Omaha.

Now imagine you’re taking the same trip in an airplane.You can trace
your air route on the same map, but because you don’t need roads, this
ground track is nearly a straight line.

A spacecraft’s ground track is similar to these examples. It’s a trace of the
spacecraft’s path over Earth’s surface. But it’s more complicated because
the spacecraft goes all the way around (more than 40,000 km or 25,000 mi.)
during each orbit and Earth spins on its axis at more than 1600 km/hr (1000
m.p.h.) at the equator at the same time, as we show in Figure 4.1.4-17.

So what does a ground track look like? To make things easy, let’s start
by pretending Earth doesn’t rotate. (Try not to get dizzy—we’ll turn the
rotation back on soon.) Picture an orbit above this non-rotating Earth. The
ground track follows a great circle route around Earth. A great circle is any
circle that “slices through” the center of a sphere. For example, lines of
longitude, as shown in Figure 4.1.4-18, are great circles, because they slice
through Earth’s center, but lines of latitude are not great circles (except for
0° latitude at the equator), because they don’t. An orbital trace must be a
great circle because the spacecraft is in orbit around Earth’s center; thus,
the orbital plane also passes through Earth’s center.

When we stretch Earth onto a flat-map projection (called a Mercator
projection), the ground track looks a little different. To visualize how this
flattening affects the ground-track shape, imagine Earth as a soda can. A

☛ Explain why spacecraft ground tracks look the way they do

☛ Use ground tracks to describe why certain types of missions use 
specific types of orbits

☛ Use ground tracks to determine the inclination and period for direct 
orbits
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Figure 4.1.4-19. Orbiting around a Soda
Can. Imagine an orbit around a soda can. It
draws a circle around the can. When we flatten
the can, the line looks like a sine wave.
trace of the orbit on the soda can is shown in Figure 4.1.4-19. It looks like
a circle slicing through the center of the can. But what if we were to flatten
the can and look at the orbital trace, as shown in Figure 4.1.4-19? It looks
like a sine wave!

Now imagine yourself on the ground watching the spacecraft pass
overhead. Because we stopped Earth from rotating, the ground track will
always stay the same, and the spacecraft will continue to pass overhead
orbit after orbit, as shown in Figure 4.1.4-20. Even if we change the size
and shape of the orbit, the ground track will look the same.

But suppose we start Earth rotating again. What happens? The space-
craft passes overhead on one orbit but appears to pass to the west of you
on the next orbit. How can this be? Because the orbital plane is immovable
in inertial space, the spacecraft stays in the same orbit. But you’re fixed to
Earth and as it rotates to the east, you move away from the orbit, making it
look as if the spacecraft moved, as seen in Figure 4.1.4-21. Each ground
track traces a path on Earth farther to the west than the previous one.

Can we learn something about the orbit from all of this? Sure! Because
Earth rotates at a fixed rate of about 15° per hr (360° in 24 hrs = 15°/hr) or
0.25° per minute, we can use this rotation as a “clock” to tell us the orbit’s
period. By measuring how much the orbit’s ground track moves to the
west from one orbit to the next, and we can establish a new parameter,
node displacement, ∆N. We measure ∆Ν along the equator from one
ascending node to the next and define it to be positive in the direction of
the spacecraft’s motion. Thus, the nodal displacement to the west during
one orbit is the difference between 360° and ∆Ν.

Figure 4.1.4-20. An Orbit’s Ground Track for a Non-Rotating Earth. For a non-rotating
Earth, the ground track of an orbit will continuously repeat.

Figure 4.1.4-21. A Normal Spacecraft Ground Track. As Earth rotates, successive
ground tracks appear to shift to the west from an Earth-based observer’s viewpoint.
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We can put this ground track shift to work in finding the orbital period
because the nodal displacement is simply Earth’s rotation rate times the
period of the orbit. For example, suppose the period of an orbit were two
hours. Earth would rotate 30° (2 hr × 15°/hr) during one orbital
revolution, producing a nodal displacement of 330° (360°  – 30°). In terms
of ∆N, we find the period from

(4.1.4-3)

[Note: As is, this equation applies only to direct orbits with a period less
than 24 hours. For other orbits, the same concept applies but the equation
changes. We’ll only consider direct orbit ground tracks with periods less
than 24 hours, so this equation will suffice.] If we can determine the
period, we can also determine the orbit’s semimajor axis using the
equation below.

(4.1.4-4)

where
P = period (s)
π = 3.14159. . .(unitless)
a = semimajor axis (km)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth

So, by finding ∆N from the ground track, we can find the period and then
the semimajor axis. For example, in the ground track in Figure 4.1.4-22, ∆N
is 315°. We find the orbital period using Equation (4.1.4-3) and the
semimajor axis using Equation (4.1.4-4). But we must be careful to watch
the units when using these equations. 

Period  (hours) 360
 

° ∆
 

N
 

–
 

15
 

°
 

hr
 

⁄
 -------------------------- (for direct orbits)=

P 2π
a3

µ
-----=

Figure 4.1.4-22. Ascending Node Shift Due to the Rotating Earth. We measure ∆N
along the equator from one ascending node to the next. It is positive in the direction of
spacecraft motion. Thus, 360° – ∆N represents the amount Earth rotates during one orbit.
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Figure 4.1.4-24. Inclination Equals
Highest Latitude, L. Because inclination
relates the angle between the orbital plane
and the equatorial plane, the highest latitude
reached by a spacecraft equals its inclination
(for direct orbits).
As the orbit’s size increases, the semimajor axis gets bigger, so ∆N gets
smaller. This happens because the spacecraft takes longer to make one
revolution as Earth rotates beneath it (the bigger the semimajor axis, a, the
longer the period). As the orbit gets bigger, the ∆

 

N gets smaller, so the
ground track appears to compress or “scrunch” together. Recall, we define
a geosynchronous orbit as one with a period of approximately 24 hours.
For such an orbit, the 

 

∆

 
N is 0°. This means the spacecraft’s period matches

Earth’s rotational period. Thus, the orbit appears to retrace itself and form a
figure 8, as shown in Figure 4.1.4-23, orbit D. If the orbit lies in the
equatorial plane (has an inclination of 0°), the ground track will be just a
dot on the equator, similar to orbit E, in Figure 4.1.4-23. A spacecraft with
a period of 24 hours and an inclination of 0° is in a geostationary orbit.
This name means the spacecraft appears stationary to Earth-based
observers, making these orbits very useful for communication satellites.
Once we point the receiving antenna at the satellite, we don’t have to
move the antenna as Earth rotates. 

Besides using the ground track to determine an orbit’s semimajor axis,
we can also find its inclination. Imagine a spacecraft in a 50° inclined
orbit. From our definition of inclination, we know in this case the angle
between the equatorial plane and the orbital plane is 50°. What’s the
highest latitude the spacecraft will pass over directly? 50°! The highest
latitude any spacecraft passes over equals its inclination. Let’s see why. 

Remember that latitude is the Earth-centered angle measured from the
equator north or south to the point in question. But the orbital plane also
passes through Earth’s center, and the angle it forms with the equatorial
plane is its inclination, as we show in Figure 4.1.4-24. Thus, for direct
(prograde) orbits, when a spacecraft reaches its northernmost point, the
point on Earth directly below it lies on the latitude line equal to the orbit’s
inclination.

Figure 4.1.4-23. Orbital Ground Tracks. Orbit A has a period of 2.67 hours. Orbit B has a
period of 8 hours. Orbit C has a period of 18 hours. Orbit D has a period of 24 hours. Orbit E
has a period of 24 hours.
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In this way, we can use the ground track to tell us the orbit’s inclination. 

• For a direct orbit (0 < i < 90°), we find the northernmost or 
southernmost point on the ground track and read its latitude. This 
“maximum latitude” equals the orbit’s inclination. 

• For a retrograde orbit (90 < i < 180°), we subtract the maximum 
latitude from 180° to get the inclination

The Earth coverage a spacecraft’s mission requires affects how we
select the orbit’s inclination. For example, if a remote-sensing spacecraft
needs to view the entire surface during the mission, it needs a near polar
inclination of about 90°. In Figure 4.1.4-25 we see several spacecraft
ground tracks with the same period but with varying inclinations.

So far we’ve looked only at circular orbits. Now let’s look at how
eccentricity and the location of perigee affect the shape of the ground
track. If an orbit is circular, its ground track is symmetrical. If an orbit is
elliptical, its ground track is lopsided. That is, it will not look the same
above and below the equator. Remember, a spacecraft moves fastest at
perigee, so it travels farthest along its path near perigee, making the
ground track look spread out. But, near apogee it’s going slower, so the
ground track is more scrunched. We show this effect in the two ground
tracks in Figure 4.1.4-26. Orbit A has perigee in the Northern Hemisphere;
Orbit B has perigee in the Southern Hemisphere. 

Figure 4.1.4-25. Changing Inclination. All four ground tracks represent orbits with a period
of 4 hours. We can find the inclination of these orbits by looking at the highest latitude
reached. Orbit A has an inclination of 10°. Orbit B has an inclination of 30°. Orbit C has an
inclination of 50°. Orbit D has an inclination of 85°. (Note that Orbit D appears distorted,
because ground distances elongate near the poles on a Mercator projection map.)
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Section Review

Key Concepts

➤ A ground track is the path a space
around Earth’s center, the orbital p

➤ When the spherically-shaped Eart
orbital ground track resembles a s

➤ Because orbital planes are fixed in
to shift westward during successiv

➤ From a ground track, you can find

• Orbital period—by measuring t

• Inclination of a spacecraft’s orbi
direct orbits)

• Approximate eccentricity of the
orbits appear lopsided

• Location of perigee—by looking
  

Figure 4.1.4-26. Changing Perigee Location.

 

 Both ground tracks represent orbits with
periods of 11.3 hours and inclinations of 50°. Both orbits are highly eccentric. Orbit A has
perigee over the Northern Hemisphere. Orbit B has perigee over the Southern Hemisphere.
If the mission objective is to get high-resolution photographs of locations in the United States,
then orbit A has perigee properly positioned.

craft traces on Earth’s surface as it orbits. Because a spacecraft orbits 
lane slices through the center, so the ground track is a great circle.

h is spread out on a two-dimensional, Mercator-projection map, the 
ine wave for orbits with periods less than 24 hours

 inertial space and Earth rotates beneath them, ground tracks appear 
e orbits

 several orbital parameters 

he westward shift of the ground track

t—by looking at the highest latitude reached on the ground track (for 

 orbit—nearly circular orbits appear symmetrical, whereas eccentric 

 at the point where the ground track is spread out the most
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